Validation of Bioassays for Vaccines

Bob Dillard

Takeda Pharmaceuticals North America

Presented at the NIH sponsored meeting
Assaying Potency of Novel Vaccines
October 11, 2005

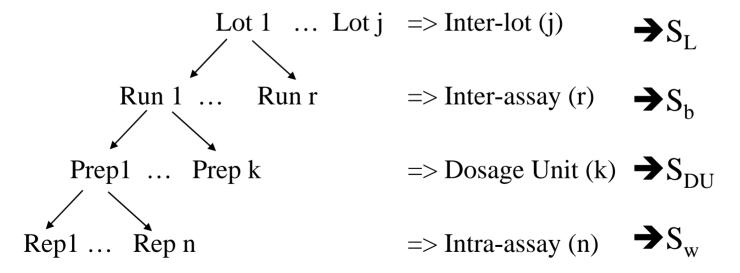
Outline

- Why validate?
- Assay characteristics → Model
- Assay validation parameters
- Reportable value → Power of averaging
- Acceptance criteria

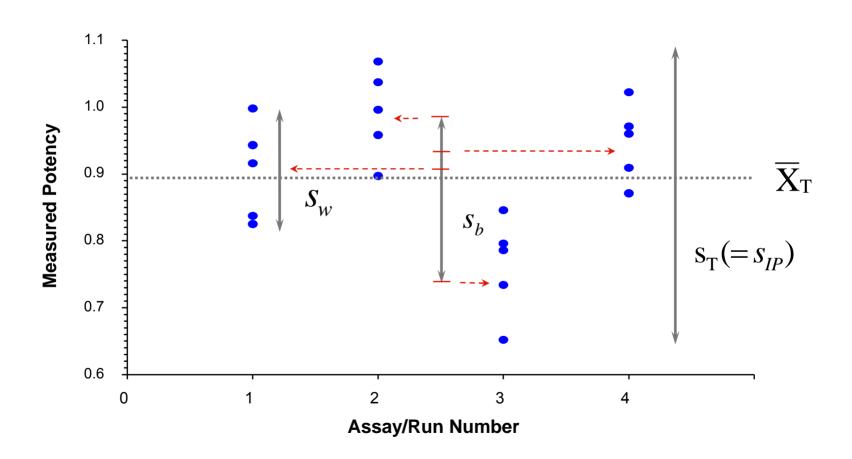
Why Validate?

- Regulatory Expectations
- Measurement is the foundation on which research decisions rest
 - Don't think of validation as pass/fail
 - Use the validation results to inform your routine choices
 - → replication informed averaging

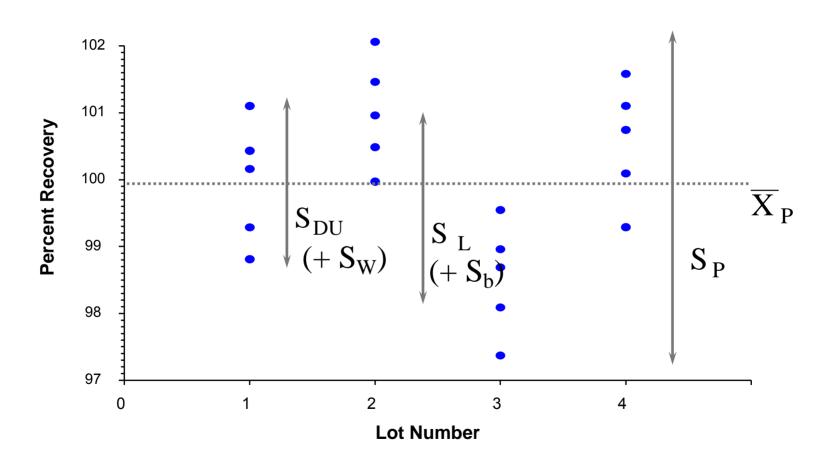
When?


- As soon as you start making decisions using the data
- After the optimal operating conditions have been established in assay development – stable operating conditions
 - Driving intra-assay factors
 - Driving Inter-assay factors
- Continuous assessment

→ Early and continuously thereafter


Assumptions

- Measure is a biologic response (activity not mass)
 - → highly variable
- Continuous response or at least convertible
- Simplistic Layout



Model of the Assay

Broader Model - Process (& Assay)

Assay Validation Parameters

- Relative "accuracy"/linearity
 - Dilution effect
 - Forced degradation

$$\left. \left. \left. \left. \left. \overline{X}_A + \overline{X}_P \right. \right. \right. \right| \right.$$

- Precision
 - Robustness intra-assay factors
 - Ruggedness inter-assay factors
 - Reproducibility random draw routine control $S_T(\to S_{RV})$
- Others are variations on accuracy or precision
 - Limit of detection, range, interference

Validation Design - Precision

- Replication pattern targeted toward primary noise sources
 - Intra-run noise
 - Inter-run noise
 - Run is independent preparation of reagents, test, and standards
 - Don't short change the number of runs (≥ 6)
- Choice of levels dictated by range of product potency
- Avoid pass/fail mentality worst case, not best

Assay Capability – Getting the Numbers

Estimates based on standard deviations of the individual replicates and the run averages.

$$S_{w} = Avg(s_{Run1}, s_{Run2},...)$$

$$S_{b} = S_{\overline{X}} - (s_{W}/n)$$
ANOVA

3 Rules:

- Noise is cumulative \rightarrow $S_{All}^2 = S_1^2 + S_2^2 + \cdots$
- Averaging improves precision **predictably** \Rightarrow $S_{Avg}^2 = \frac{S_{y_i}^2}{n}$
- Mean ± 3s bracket the results

Assay Capability - Using the Information

- Reportable Value
 - What constitutes an assay?

- Sources of Noise (Propagation of Errors)
 - Control by averaging

$$S_{RV}^{2} = \frac{S_{DU}^{2}}{k} + \frac{S_{W}^{2}}{n} + S_{b}^{2}$$

$$S_{RV}^{2} = \frac{S_{DU}^{2}}{k} + \frac{S_{W}^{2}}{n} + S_{b}^{2}$$
 Average of c composites:
$$S_{RV}^{2} = \frac{S_{DU}^{2}}{c * k} + \frac{S_{W}^{2}}{c * n} + S_{b}^{2}$$

In viral/bioassay average over r runs

Establishing a Reportable Value

- How do you define the rv?
 - → Impact, Criteria, Cost

Impact of the sample allocation.

Suppose,
$$S_{w} = 17\%$$
 $S_{RV} = \sqrt{\frac{S_{w}^{2} + S_{b}^{2}}{n \cdot r}}$

	Runs (r)			
n	1	6	12	
1	30%	12%	9%	
2	28%	11%	8%	
3	27%	11%	8%	

Acceptance Criteria

- Acceptance Criteria dictated by use of the assay
 - Define use by a range or specification limits
- Adjust the replication so that,

$$6\sqrt{S_P^2 + S_{RV}^2} \le Range$$

■ If our desired range is 50% to 150%

$$\rightarrow S_{RV} \leq 17\%$$

How much replication is too much?

- Replication vs Method Improvement
 - Partly driven by \$
- Capability of the Art ?

		S_T	Range
•	Small Molecule (HPLC)	<5%	±15%
•	SM in matrix (GC/Mass Spec)	15%	±45%
•	Bigger Molecule (Immunoassay)	20%	±60%
•	BM activity (Bioassay)	50%	±150%

Viral Assay

But these can be easily reduced by 60% just by judicious averaging

So, what level of S_{RV} do I target?

Pitfalls

- Limited data has risks
 - Some risks are controlled by choice of multipliers
 - Look for ways to update and expand information
 - → Follow-up (continuous assessment)

 Stability studies, Control samples, Scale-up
- The curse of the validation experiment
 - We tend to reward pass/fail rather than good information
- You will likely need to work in log scale

Data Driven Release Specifications

Data Driven Expiry Specifications

ES = Process/Assay Mean ± Drift – Degradation ± Uncertainties

$$L/UES = \overline{X} \pm S_L + \beta * T \pm 3 * \sqrt{S_L^2 + T^2 * S_\beta^2 + S_{RV}^2}$$

Then ask:

Are these specs pharmacologically sound? Are they close to what agencies are asking for?

Recommendations

- Define carefully what values should be held up to the specification – reportable value.
 - Do NOT expect individual values to meet those same specs.
 - Paradox of individuals disincentive to collect more data.
- Validation is a continuous process
 - Utilize all of your information

